Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Front Immunol ; 15: 1380641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601144

RESUMO

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Assuntos
Subpopulações de Linfócitos B , Camundongos , Animais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B , Cadeias Leves de Imunoglobulina/genética , Translocação Genética , Imunoglobulina M , Contagem de Células
2.
Front Immunol ; 15: 1363176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629061

RESUMO

In recent years, in addition to the well-established role of T cells in controlling or promoting tumor growth, a new wave of research has demonstrated the active involvement of B cells in tumor immunity. B-cell subsets with distinct phenotypes and functions play various roles in tumor progression. Plasma cells and activated B cells have been linked to improved clinical outcomes in several types of cancer, whereas regulatory B cells have been associated with disease progression. However, we are only beginning to understand the role of a particular innate subset of B cells, referred to as B-1 cells, in cancer. Here, we summarize the characteristics of B-1 cells and review their ability to infiltrate tumors. We also describe the potential mechanisms through which B-1 cells suppress anti-tumor immune responses and promote tumor progression. Additionally, we highlight recent studies on the protective anti-tumor function of B-1 cells in both mouse models and humans. Understanding the functions of B-1 cells in tumor immunity could pave the way for designing more effective cancer immunotherapies.


Assuntos
Linfócitos B Reguladores , Neoplasias , Animais , Camundongos , Humanos , Linfócitos T , Imunidade , Imunoterapia
3.
Biochem Biophys Rep ; 38: 101709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38638675

RESUMO

B-cell Chronic Lymphocytic Leukemia (B-CLL) is a malignancy caused by the clonal expansion of mature B lymphocytes bearing a CD5+CD19+ (B1) phenotype. However, the origin of B-CLL remains controversial. We showed previously that STYK1/NOK transgenic mice develop a CLL-like disease. Using this model system in this study, we attempt to define the stage of CLL initiation. Here, we show that the phenotype of STYK1/NOK-induced B-CLL is heterogeneous. The expanded B1 lymphocyte pool was detected within peripheral lymphoid organs and was frequently associated with the expansions of memory B cells. Despite this immunophenotypic heterogeneity, suppression of B cell development at an early stage consistently occurred within the bone marrow (BM) of STYK1/NOK-tg mice. Overall, we suggest that enforced expression of STYK1/NOK in transgenic mice might significantly predispose BM hematopoietic stem cells (HSCs) towards the development of B-CLL.

4.
Cell Immunol ; 395-396: 104788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38000306

RESUMO

Recent advances in immunotherapy have not addressed the challenge presented by ovarian cancer. Although the peritoneum is an "accessible" locus for this disease there has been limited characterization of the immunobiology therein. We investigated the ID8-C57BL/6J ovarian cancer model and found marked depletion of B1 cells from the ascites of the peritoneal cavity. There was also selective loss of the B1 and marginal zone B cell subsets from the spleen. Immunity to antigens that activate these subsets validated their loss rather than relocation. A marked influx of myeloid-derived suppressor cells correlated with B cell subset depletion. These observations are discussed in the context of the housekeeping burden placed on innate B cells during ovarian cancer and to foster consideration of B cell biology in therapeutic strategies to address this challenge.


Assuntos
Subpopulações de Linfócitos B , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Linfócitos B , Peritônio , Cavidade Peritoneal , Neoplasias Ovarianas/tratamento farmacológico , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 14: 1106294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744333

RESUMO

To date, studies of tissue-resident immunity have mainly focused on innate immune cells and T cells, with limited data on B cells. B-1 B cells are a unique subset of B cells with innate-like properties, enriched in murine pleural and peritoneal cavities and distinct from conventional B-2 cells in their ontogeny, phenotype and function. Here we discuss how B-1 cells represent exemplar tissue-resident immune cells, summarizing the evidence for their long-term persistence & self-renewal within tissues, differential transcriptional programming shaped by organ-specific environmental cues, as well as their tissue-homeostatic functions. Finally, we review the emerging data supporting the presence and homeostatic role of B-1 cells across non-lymphoid organs (NLOs) both in mouse and human.


Assuntos
Subpopulações de Linfócitos B , Humanos , Animais , Camundongos , Linfócitos B , Sinais (Psicologia) , Homeostase , Cavidade Peritoneal
6.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511278

RESUMO

Cord blood represents a link between intrauterine and early extrauterine development. Cord blood cells map an important time frame in human immune imprinting processes. It is unknown whether the sex of the newborn affects the lymphocyte subpopulations in the cord blood. Nine B and twenty-one T cell subpopulations were characterized using flow cytometry in human cord blood from sixteen male and twenty-one female newborns, respectively. Except for transitional B cells and naïve B cells, frequencies of B cell counts across all subsets was higher in the cord blood of male newborns than in female newborns. The frequency of naïve thymus-negative Th cells was significantly higher in male cord blood, whereas the remaining T cell subpopulations showed a higher count in the cord blood of female newborns. Our study is the first revealing sex differences in the B and T cell subpopulations of human cord blood. These results indicate that sex might have a higher impact for the developing immune system, urging the need to expand research in this area.


Assuntos
Sangue Fetal , Caracteres Sexuais , Humanos , Masculino , Recém-Nascido , Feminino , Subpopulações de Linfócitos , Linfócitos B , Citometria de Fluxo , Subpopulações de Linfócitos T
7.
Front Toxicol ; 5: 960861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143777

RESUMO

Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.

8.
Front Immunol ; 14: 1130930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138883

RESUMO

The LIN28B RNA binding protein exhibits an ontogenically restricted expression pattern and is a key molecular regulator of fetal and neonatal B lymphopoiesis. It enhances the positive selection of CD5+ immature B cells early in life through amplifying the CD19/PI3K/c-MYC pathway and is sufficient to reinitiate self-reactive B-1a cell output when ectopically expressed in the adult. In this study, interactome analysis in primary B cell precursors showed direct binding by LIN28B to numerous ribosomal protein transcripts, consistent with a regulatory role in cellular protein synthesis. Induction of LIN28B expression in the adult setting is sufficient to promote enhanced protein synthesis during the small Pre-B and immature B cell stages, but not during the Pro-B cell stage. This stage dependent effect was dictated by IL-7 mediated signaling, which masked the impact of LIN28B through an overpowering stimulation on the c-MYC/protein synthesis axis in Pro-B cells. Importantly, elevated protein synthesis was a distinguishing feature between neonatal and adult B cell development that was critically supported by endogenous Lin28b expression early in life. Finally, we used a ribosomal hypomorphic mouse model to demonstrate that subdued protein synthesis is specifically detrimental for neonatal B lymphopoiesis and the output of B-1a cells, without affecting B cell development in the adult. Taken together, we identify elevated protein synthesis as a defining requirement for early-life B cell development that critically depends on Lin28b. Our findings offer new mechanistic insights into the layered formation of the complex adult B cell repertoire.


Assuntos
Linfócitos B , Células Precursoras de Linfócitos B , Camundongos , Animais
9.
Life (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37109388

RESUMO

End-stage renal disease (ESRD) is followed by alterations in adaptive immunity. The aim of this study was to evaluate B lymphocyte subtypes in ESRD patients before and after hemodialysis (HD) or continuous ambulatory peritoneal dialysis (CAPD). PATIENTS AND METHODS: CD5, CD27, BAFF, IgM and annexin were evaluated by flow cytometry on CD19+ cells in ESRD patients (n = 40), at time of initiating HD or CAPD (T0) and 6 months later (T6). RESULTS: A significant reduction in ESRD-T0 compared to controls was noticed for CD19+, 70.8 (46.5) vs. 171 (249), p < 0.0001, CD19+CD5-, 68.6 (43) vs. 168.9 (106), p < 0.0001, CD19+CD27-, 31.2 (22.1) vs. 59.7 (88.4), p < 0.0001, CD19+CD27+, 42.1 (63.6) vs. 84.3 (78.1), p = 0.002, CD19+BAFF+, 59.7 (37.8) vs. 127.9 (123.7), p < 0.0001 and CD19+IgM+ cells, 48.9 (42.8) vs. 112.5 (81.7) (K/µL), p < 0.0001. The ratio of early/late apoptotic B lymphocytes was reduced (16.8 (10.9) vs. 110 (25.4), p = 0.03). CD19+CD5+ cells were the only cell type with an increased proportion in ESRD-T0 patients (2.7 (3.7) vs. 0.6 (1.1), p < 0.0001). After 6 months on CAPD or HD, CD19+CD27-(%) and early apoptotic lymphocytes were reduced further. The HD patients also showed a significant increase in late apoptotic lymphocytes, from 1.2 (5.7) to 4.2 (7.2) K/mL, p = 0.02. CONCLUSIONS: B cells and most of their subtypes were significantly reduced in ESRD-T0 patients compared to controls, the only exception being CD19+CD5+ cells. Apoptotic changes were prominent in ESRD-T0 patients and were exacerbated by HD.

10.
Eur J Immunol ; 53(6): e2250116, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905220

RESUMO

Due to ontogenetic changes in B-cell developmental lineages, the mature B-cell compartment constitutes by functionally different B-cell subsets that emerged from prenatal, early postnatal or adult precursors. While negative selection processes operate primarily within the framework of B-cell tolerance checkpoints during B-cell development, further differentiation into distinct B-cell subsets is additionally induced by positive selection. In addition to endogenous antigens, contact with microbial antigens is also involved in this selection process, with intestinal commensals having a significant influence on the development of a large layer within the B-cell compartment. The decisive threshold that triggers negative selection seems to be relaxed during fetal B-cell development, thereby allowing recruitment of polyreactive and also autoreactive B-cell clones into the mature naïve B-cell compartment. Almost all of the concepts on B-cell ontogeny are based on observations in laboratory mice that not only differ from humans in their developmental timeline but also in their composition of commensal microorganisms or rather a lack of exposure to these. In this review, we summarize conceptual findings on B-cell ontogeny and particularly describe key insights into the developing human B-cell compartment and immunoglobulin repertoire formation.


Assuntos
Subpopulações de Linfócitos B , Linfócitos B , Camundongos , Animais , Adulto , Humanos , Antígenos , Tolerância Imunológica , Diferenciação Celular
11.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900259

RESUMO

NSC243928 induces cell death in triple-negative breast cancer cells in a LY6K-dependent manner. NSC243928 has been reported as an anti-cancer agent in the NCI small molecule library. The molecular mechanism of NSC243928 as an anti-cancer agent in the treatment of tumor growth in the syngeneic mouse model has not been established. With the success of immunotherapies, novel anti-cancer drugs that may elicit an anti-tumor immune response are of high interest in the development of novel drugs to treat solid cancer. Thus, we focused on studying whether NSC243928 may elicit an anti-tumor immune response in the in vivo mammary tumor models of 4T1 and E0771. We observed that NSC243928 induced immunogenic cell death in 4T1 and E0771 cells. Furthermore, NSC243928 mounted an anti-tumor immune response by increasing immune cells such as patrolling monocytes, NKT cells, B1 cells, and decreasing PMN MDSCs in vivo. Further studies are required to understand the exact mechanism of NSC243928 action in inducing an anti-tumor immune response in vivo, which can be used to determine a molecular signature associated with NSC243928 efficacy. NSC243928 may be a good target for future immuno-oncology drug development for breast cancer.

12.
Front Immunol ; 14: 1259827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162664

RESUMO

Human B1 cells produce natural antibodies characterized by overutilization of heavy chain variable region VH4-34 in comparison to other B cell populations. VH4-34-containing antibodies have been reported to be autoreactive and to be associated with lupus and other autoimmune dyscrasias. However, it has been unclear to what extent VH4-34 antibodies manifest autoreactivity in B1 cells or other B cell populations-in other words, are VH4-34 containing antibodies autoreactive wherever found, or mainly within the B1 cell population? To address this issue we sort purified single human B1 and memory B cells and then amplified, sequenced, cloned and expressed VH4-34-containing antibodies from 76 individual B cells. Each of these antibodies was tested for autoreactivity by HEp-2 IFA and autoantigen ELISA. Antibodies were scored as autoreactive if positive by either assay. We found VH4-34 antibodies rescued from B1 cells were much more frequently autoreactive (14/48) than VH4-34 antibodies rescued from memory B cells (2/28). Among B1 cell antibodies, 4 were HEp-2+, 6 were dsDNA+ and 4 were positive for both. Considering only HEp-2+ antibodies, again these were found more frequently among B1 cell VH4-34 antibodies (8/48) than memory B cell VH4-34 antibodies (1/28). We found autoreactivity was associated with greater CDR3 length, as expected; however, we found no association between autoreactivity and a previously described FR1 "hydrophobic patch". Our results indicate that autoreactive VH4-34-containing antibodies tend to reside within the human B1 cell population.


Assuntos
Subpopulações de Linfócitos B , Região Variável de Imunoglobulina , Humanos , Região Variável de Imunoglobulina/genética , Linfócitos B , Cadeias Pesadas de Imunoglobulinas/genética , Anticorpos Monoclonais
13.
Front Immunol ; 13: 959021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532012

RESUMO

B cells, which consist of two well-defined populations: B1 and B2 cells, which can produce antibodies that are essential for host protection against infections, through virus neutralization, opsonization and antibody-dependent cellular cytotoxicity. Epigenetic modifications, such as DNA methylation and histone modification could regulate immune cell differentiation and functions. In this study, we found a significant reduction of GC response in the B cell specific knockout of H3K36 methyltransferase NSD1 (Mb1-Cre+ NSD1fl/fl, NSD1B KO) mice compared with the wildtype control (Mb1-Cre+ NSD1+/+, NSD1B WT). We also demonstrated reduced production of high-affinity antibody, but increased production of low-affinity antibody in the NSD1B KO mice. Further analysis revealed that loss of NSD1 promoted the development of B1 cells by increasing the expression of Rap1b and Arid3a. In conclusion, our data suggest that NSD1 plays an important role in regulation the development of B1 and B2 cells, and the process of germinal center formation and high-affinity antibody production.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Camundongos , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histona Metiltransferases/metabolismo , Diferenciação Celular , Centro Germinativo/metabolismo
14.
Front Immunol ; 13: 1061651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524112

RESUMO

Only few studies have described the anti-tumor properties of natural antibodies (NAbs). In particular, natural IgM have been linked to cancer immunosurveillance due to its preferential binding to tumor-specific glycolipids and carbohydrate structures. Neu5GcGM3 ganglioside is a sialic acid-containing glycosphingolipid that has been considered an attractive target for cancer immunotherapy, since it is not naturally expressed in healthy human tissues and it is overexpressed in several tumors. Screening of immortalized mouse peritoneal-derived hybridomas showed that peritoneal B-1 cells contain anti-Neu5GcGM3 antibodies on its repertoire, establishing a link between B-1 cells, NAbs and anti-tumor immunity. Previously, we described the existence of naturally-occurring anti-Neu5GcGM3 antibodies with anti-tumor properties in healthy young humans. Interestingly, anti-Neu5GcGM3 antibodies level decreases with age and is almost absent in non-small cell lung cancer patients. Although anti-Neu5GcGM3 antibodies may be clinically relevant, the identity of the human B cells participating in this anti-tumor antibody response is unknown. In this work, we found an increased percentage of circulating human B-1 cells in healthy individuals with anti-Neu5GcGM3 IgM antibodies. Furthermore, anti-Neu5GcGM3 IgMs were generated predominantly by human B-1 cells and the antibodies secreted by these B-1 lymphocytes also recognized Neu5GcGM3-positive tumor cells. These data suggest a protective role for human B-1 cells against malignant transformation through the production of NAbs reactive to tumor-specific antigens such as Neu5GcGM3 ganglioside.


Assuntos
Subpopulações de Linfócitos B , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Gangliosídeos , Imunoglobulina M , Antígenos de Neoplasias
15.
Immunity ; 55(10): 1829-1842.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115337

RESUMO

The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.


Assuntos
Imunoglobulina A , Microbiota , Animais , Linfócitos B , Centro Germinativo , Camundongos , Plasmócitos
16.
Immunobiology ; 227(6): 152280, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179431

RESUMO

B-1 lymphocytes are a subtype of B cells with functional and phenotypic features that differ from conventional B lymphocytes. These cells are mainly located in mice's pleural and peritoneal cavities and express unconventional B cell surface markers. B-1 cells participate in immunity by producing antibodies, cytokines, and chemokines and physically interacting with other immune cells. In addition, B-1 cells can differentiate into mononuclear phagocyte-like cells and phagocytize several pathogens. However, the activation and differentiation of B-1 cells are not entirely understood. It is known that several factors can influence B-1 cells, such as pathogens components and the immune response. This work aimed to evaluate the influence of chronic stress on B-1 cell activation and differentiation into phagocytes. The experimental sleep restriction was used as a stress model since the sleep alteration alters several immune cells' functions. Thus, mice were submitted to sleep restriction for 21 consecutive days, and the activation and differentiation of B-1 cells were analyzed. Our results demonstrated that B-1 cells initiated the differentiation process into mononuclear phagocytes after the period of sleep restriction. In addition, we detected a significant decrease in lymphoid lineage commitment factors (EBF, E2A, Blnk) (*P < 0.05) and an increase in the G-CSFR gene (related to the myeloid lineage commitment factor) (****P < 0.0001), as compared to control mice no submitted to sleep restriction. An increase in the co-stimulatory molecules CD80 and CD86 (**P < 0.01 and *P < 0.05, respectively) and a higher production of nitric oxide (NO) (*P < 0.05) and reactive oxygen species (ROS) (*P < 0.05) were also observed in B-1 cells from mice submitted to sleep restriction. Nevertheless, B-1 cells from sleep-restricted mice showed a significant reduction in the Toll-like receptors (TLR)-2, -6, and -9, and interleukine-10 (IL-10) cytokine expression (***P < 0.001) as compared to control. Sleep-restricted mice intraperitoneally infected withL. amazonensispromastigotes showed a reduction in the average internalized parasites (*P < 0.05) by B-1 cells. These findings suggest that sleep restriction interferes with B-1 lymphocyte activation and differentiation. In addition, b-1 cells assumed a more myeloid profile but with a lower phagocytic capacity in this stress condition.


Assuntos
Subpopulações de Linfócitos B , Ativação Linfocitária , Camundongos , Animais , Diferenciação Celular , Linfócitos B , Citocinas/metabolismo , Sono
17.
Biochem Biophys Res Commun ; 626: 51-57, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35970044

RESUMO

STYK1/NOK functions in a ligand independent and constitutive fashion to provoke tumor formation and to be up-regulated in many types of cancer cells. However, how STYK1/NOK functions at the whole animal level is completely unknown. Here, we found that STYK1/NOK-transgenic (tg) mice spontaneously developed immunosuppressive B-CLL-like disease with generally shorter life spans. The phenotype of STYK1/NOK-induced B-CLL was typically heterogeneous, and most often, presented lymphadenectasis accompanied with hepatomegaly and/or splenomegaly. STYK1/NOK-tg mice also suffered reduced immune responses. The expanded CD5+CD19+ (B1) lymphocyte pool was detected within peripheral lymphoid organs. Analysis on GEO profile revealed that expression of STYK1/NOK were significantly up-regulated in primary human B-CLL. Inoculation of blood cells from sick STYK1/NOK-tg mice into immune-deficient recipients recaptured the B1 malignant phenotype. Our study demonstrated that STYK1/NOK transgenic mouse may serve as a useful model system for the developments of novel diagnosis and treatment of B-CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores Proteína Tirosina Quinases , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Transgênicos , Receptores Proteína Tirosina Quinases/metabolismo
18.
Front Immunol ; 13: 909475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935999

RESUMO

Immunoglobulin M (IgM) to oxidation specific epitopes (OSE) are inversely associated with atherosclerosis in mice and humans. The B-1b subtype of B-1 cells secrete IgM to OSE, and unlike B-1a cells, are capable of long-lasting IgM memory. What attributes make B-1b cells different than B-1a cells is unknown. Our objectives were to determine how B-1b cells produce more IgM compared to B-1a cells at homeostatic condition and to see the differences in the B-1a and B-1b cell distribution and IgM CDR-H3 sequences in mice with advanced atherosclerosis. Here, in-vivo studies demonstrated greater migration to spleen, splenic production of IgM and plasma IgM levels in ApoE-/-Rag1-/- mice intraperitoneally injected with equal numbers of B-1b compared to B-1a cells. Bulk RNA seq analysis and flow cytometry of B-1a and B-1b cells identified CCR6 as a chemokine receptor more highly expressed on B-1b cells compared to B-1a. Knockout of CCR6 resulted in reduced B-1b cell migration to the spleen. Moreover, B-1b cell numbers were significantly higher in spleen of aged atherosclerotic ApoE-/- mice compared to young ApoE-/- mice. Single cell sequencing results of IgHM in B-1a and B-1b cells from peritoneal cavity and spleen of atherosclerotic aged ApoE-/- mice revealed significantly more N additions at the V-D and D-J junctions, greater diversity in V region usage and CDR-H3 sequences in B-1b compared to B-1a cells. In summary, B-1b cells demonstrated enhanced CCR6-mediated splenic migration, IgM production, and IgM repertoire diversification compared to B-1a cells. These findings suggest that potential strategies to selectively augment B-1b cell numbers and splenic trafficking could lead to increased and more diverse IgM targeting OSE to limit atherosclerosis.


Assuntos
Aterosclerose , Idoso , Animais , Apolipoproteínas E , Aterosclerose/genética , Homeostase , Humanos , Imunoglobulina M , Camundongos , Camundongos Endogâmicos C57BL
19.
Cell Mol Life Sci ; 79(6): 331, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648273

RESUMO

Alzheimer's disease (AD) is associated with dysregulated immune and inflammatory responses. Emerging evidence indicates that peripheral immune activation is linked to neuroinflammation and AD pathogenesis. The present study focuses on determining the role of IL-21 in the pathogenesis of AD using human samples and the 5xFAD mice model. We find that the levels of IL-21 are increased in the periphery of both humans and mice in AD. In addition, the proportions of IL-21 target cells, Tfh and B plasma cells as well as activation of monocytes is increased in PBMCs from AD and mild cognitively impaired (MCI) subjects as compared to age-matched controls, indicating immune activation. In contrast, the percentage of B1 cells that control inflammation is decreased. These changes are due to IL-21 as the expression of IL-21 receptor (IL-21R) is higher on all these cells in AD. Furthermore, treatment with recombinant IL-21 in AD mice also leads to similar alterations in Tfh, B, B1, and macrophages. The effect of IL-21 is not confined to the periphery since increased expression of IL-21R is also observed in both humans and mice hippocampus derived from the AD brains. In addition, mice injected with IL-21 display increased deposition of amyloid beta (Aß) plaques in the brain which is reduced following anti-IL-21R antibody that blocks the IL-21 signaling. Moreover, activation of microglia was enhanced in IL-21-injected mice. In keeping with enhanced microglial activation, we also observed increased production of pro-inflammatory cytokines, IL-18 and IL-6 in IL-21-injected mice. The microglial activation and cytokines were both inhibited following IL-21R blockage. Altogether, IL-21 escalates AD pathology by enhancing peripheral and brain immune and inflammatory responses leading to increased Aß plaque deposition. IL-21 impacts AD neuropathology by enhancing peripheral and neuronal immune activation, inflammation, and Aß plaque deposition. Increased levels of IL-21 in the circulation of AD and MCI subjects enhances the proportions of Tfh and B plasma cells indicative of peripheral immune activation. On the other hand, the proportions of B1 cells that help reduce inflammation and clear Aß are reduced. In addition to the periphery, IL-21 also acts on the brain via IL-21 receptor, IL-21R that displays increased expression in the hippocampi of AD and MCI subjects. IL-21 enhances the activation of microglia, induces the secretion of pro-inflammatory cytokines and deposition of Aß plaques in the brain in AD.


Assuntos
Doença de Alzheimer , Interleucinas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Receptores de Interleucina-21/metabolismo
20.
Front Immunol ; 13: 814857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418972

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multisystemic and multi-organ involvement, recurrent relapses and remissions, and the presence of large amounts of autoantibodies in the body as the main clinical features. The mechanisms involved in this disease are complex and remain poorly understood; however, they are generally believed to be related to genetic susceptibility factors, external stimulation of the body's immune dysfunction, and impaired immune regulation. The main immune disorders include the imbalance of T lymphocyte subsets, hyperfunction of B cells, production of large amounts of autoantibodies, and further deposition of immune complexes, which result in tissue damage. Among these, B cells play a major role as antibody-producing cells and have been studied extensively. B1 cells are a group of important innate-like immune cells, which participate in various innate and autoimmune processes. Yet the role of B1 cells in SLE remains unclear. In this review, we focus on the mechanism of B1 cells in SLE to provide new directions to explore the pathogenesis and treatment modalities of SLE.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Complexo Antígeno-Anticorpo , Autoanticorpos , Linfócitos B , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...